MULTIPLYING HEPATOCYTE PHOSPHOLIPIDOSIS ASSAY

MULTIPLYING HEPATOCYTE ACCUMULATION ASSAY

CONCLUSION

REFERENCES

Identification of drug-induced hepatotoxic potential early in the drug development cascade can create opportunities for ranking and prioritizing, allowing for more focused and cost-effective development decisions. In vivo models, such as the rat model, can provide valuable insights into the mechanisms of liver injury, but they are limited in their ability to recapitulate the complex human liver physiology and drug metabolism. Therefore, in vitro models are essential for the evaluation of liver toxicity. Liverscience offers a comprehensive suite of in vitro liver functional assays that can be used to assess multiple aspects of liver function, including hepatocellular damage, autophagy, and lipid metabolism. These assays are based on real-time monitoring of liver function parameters, such as liver damage markers, cytokine secretion, and mitochondrial function, and can be used to screen a large number of compounds in a short period of time. As a result, these assays can be used to identify potential liver toxicants early in the drug development process, allowing for more efficient and effective drug development.

Overall, the study demonstrates the importance of hepatotoxicity screening in drug development and highlights the potential of in vitro liver functional assays for the identification of drug-induced liver injury. These findings underscore the need for a comprehensive approach to hepatotoxicity screening, including in vivo models and in vitro assays, to ensure the safety and efficacy of new drugs.

In conclusion, the study highlights the importance of screening for hepatotoxicity at early stages of drug development, and the potential of in vitro liver functional assays for the identification of drug-induced liver injury. These findings underline the need for a comprehensive approach to hepatotoxicity screening, including in vivo models and in vitro assays, to ensure the safety and efficacy of new drugs.

REFERENCES