Drug repositioning has become a matter of intense interest during the past few years. It is an approach to drug development that calls for reinvestigation of candidates that did not succeed in advanced clinical trials (for reasons other than safety) for potential use in other therapeutic indications.

Discussed in this Report:

- Intellectual property coverage for new uses of known drugs
- Tool sets for identifying repositioning opportunities and business strategies
- Applicable legal frameworks and regulatory timelines for repositioned drugs
- Case studies of compound repositioning and approaches taken
- Activities of selected key companies in the drug repositioning business
- Financial aspects and economic potential of drug repositioning
Drug repositioning is also known as drug repurposing, reprofiling, or retasking. In “on-target repurposing,” a drug’s known pharmacological mechanism is applied to a different therapeutic indication than that for which it was initially developed. Even more innovative is “off-target repurposing,” which looks for pharmacological mechanisms that have not yet been described for a known molecule. In either case, having previously failed during clinical development is not a criterion for repositioning; the avenue is equally open to drugs that are or have been marketed.

Drug repurposing can have very different commercial implications. These will depend on where the drug comes from, how much accessible data exist, and how well the repurposer can exploit the new value chain created by a successfully repurposed drug. This will to a large extent depend on what sort of intellectual property can be secured for the drug’s new use, as examined in Chapter 2 of Drug Repositioning: Extracting Value from Prior R&D Investments. The repurposer fights an uphill battle against examiners who will scrutinize the prior art for “obviousness,” i.e., any public facts that can be construed to have anticipated the new medical use of a known drug.

Together with expert knowledge in pharmacology, state-of-the-art genomic, proteomic, animal model, and bioinformatics technologies are employed to identify repurposing opportunities and business strategies. These more technology-oriented aspects are discussed in Chapter 3, followed by an outline of the regulatory environment for repurposing in Chapter 4. Here, we discuss the applicable legal framework and show that while repurposing can remove the initial 1–1.5 years of preclinical and Phase I development time (the latter only if no new formulation has to be developed and tested), the later stages of the regulatory review process for repurposed drugs are the same as with new chemical entities. Chapter 5 discusses exemplary cases of drug repositioning and the approaches taken, depending on the intended goal.

Use Extensions vs. On- and Off-Target Repurposing

<table>
<thead>
<tr>
<th>Therapeutic Field</th>
<th>Molecular or Pathway/Target</th>
<th>Use Extension (Not Repurposing)</th>
<th>Off-Target Repurposing (Rare Cases)</th>
<th>Off-Target Repurposing (High Novelty)</th>
<th>On-Target Repurposing (Medium Novelty)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Different</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Same</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Same</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source: H.M. Pharma Consultancy

Drug repurposing has become a new business segment for the life science services industry. Chapter 6 profiles selected key companies that offer platform-based services to identify repurposing opportunities. For the decade ahead to 2020, we predict that cutting-edge repurposing technology will see increasing integration as a standard process of resource utilization, de-risking and acceleration of drug development. In this chapter we also discuss the internal repurposing efforts of Pfizer, Novartis, and Eli Lilly and how these programs tie into their overall development strategies.

Drug Repositioning: Extracting Added Value from Prior R&D Investments concludes with a discussion of the financial aspects, considering the benefits of repurposing for larger, smaller, and startup companies.

About the Author

Hermann A.M. Mucke, Ph.D., spent 17 years in academia and industry before he founded H.M. Pharma Consultancy (www.hmpharmacon.com) in 2000 to become an independent pharmaceutical consultant, analyst, and science author. His last industry position was Vice President R&D in a European pharmaceutical company, which he helped to take public on the Frankfurt Stock Exchange in 1999. Since then, Dr. Mucke, who holds a Ph.D. in biochemistry from the University of Vienna (Austria), has become a consultant and advisory board member for several European and American pharmaceutical companies and a regular reviewer of drugs and patents for Thomson Current Drugs and Ashley Publications. Dr. Mucke is based in Vienna.
Table of Contents

Chapter 1
INTRODUCTION: A SECOND LIFE FOR DRUGS AND DRUG CANDIDATES
1.1. Targets and Agents: Approaching the Limits
1.2. Human Physiology as a Network of Interdependencies
1.3. Leveraging Drug Repurposing To Turn the Tables on Pipeline Erosion
1.4. Finding Another Disease To Treat: On-Target and Off-Target

Chapter 2
DRUG REPOSITIONING AND INTELLECTUAL PROPERTY
2.1. Considerations Regarding the Patentability Criteria
2.2. Searching Prior Art to Assess Repurposing Opportunities
2.3. Searching for Intellectual Property Gaps
2.4. Data Support: An Indispensable Requirement for Second Use Patenting
2.5. Case Study: Developer Actelion Claims Bosentan for Ovarian Cancer

Chapter 3
3.1. What Strategic Considerations Make a Compound a Repositioning Candidate?
3.2. Identification of Repurposing Opportunities
3.3. Targeted High-Throughput Screening and Inverse High-Content Screening
3.4. Putting Informatics to Work
3.5. Repurposing Aided By Drug Multiplexing Animal Tests
3.6. Repurposing for Biodefense: A Strategy Outside of the Mainstream

Chapter 4
REPOSITIONED DRUGS AND REGULATORY AUTHORITIES
4.1. The FDA’s 505(b)(2) New Drug Application
4.2. The EMEA “Hybrid Application”

Chapter 5
EXAMPLES OF DRUG REPURPOSING
5.1. Successfully Repositioned Compounds That Were Never Marketed For Their Original Development Targets or Were Withdrawn From the Market
5.2. Drugs That Were Moderately Successful and Were (Or Are Being) Repurposed
5.3. Successful Primary-Use Drugs in Repurposing Scenarios
5.4. Failed, and Failed Again…Perhaps For the Wrong Reasons

Chapter 6
COMPANIES IN THE DRUG REPURPOSING BUSINESS
6.1. Business Models Centered On Drug Repurposing: Different From Those for Discovery?
6.2. The Small, Drug-Repurposing Specialists

Chapter 7
THE ECONOMIC POTENTIAL OF DRUG REPURPOSING
7.1. Cost Savings of Repurposing In Discovery and Development
7.2. Acceleration of Drug Development: Time Equals Sales
7.3. The Benefits of De-Risking
7.4. The Repurposing Service Provider’s Perspective
7.5. Summary and Outlook

References
Company Index with Web Addresses

FIGURES
Figure 1.1. On- vs. Off-Target Repurposing Contextualized in Three Dimensions: Chemical, Mechanistic, Therapeutic
Figure 2.1. Intellectual Property Protection in On- and Off-Target Repurposing Scenarios
Figure 3.1. Strategies for Repurposing Marketed Drugs vs. Non-Marketed Drug Candidates
Figure 4.1. Regulatory Pathways for Drug Repurposing: Marketed vs. Shelved/Withdrawn Drugs

TABLES
Table 1.1. Use Extensions vs. On- and Off-Target Repurposing
Table 2.1. Regulatory Timelines for a Repurposed Drug vs. a New Chemical Entity (NCE)
Table 3.1. Global Sales (US$ Millions) for Propecia vs. Proscar, 2003–2009
Table 4.1. International PCT Patent Disclosures From Ore Pharmaceuticals
Table 5.1. International PCT Patent Disclosures From Biovista, Inc.
Table 6.1. International PCT Patent Disclosures From Melior Discovery
Table 7.1. International PCT Patent Disclosures From Vifor
Drug Repositioning: Extracting Added Value from Prior R&D Investments

Drug Repositioning – July 2010 (114 pages) □ $2,995.00
Data Mining in Drug Development and Translational Medicine – July 2009 (114 pages) □ $2,995.00
Purchase both reports and receive a 10% discount

Total: $_________________

*Single-site licenses are multi-user, searchable, cut-and-paste ready PDFs
Call for global licensing pricing; contact Jack Valeri at 781-972-1355 or jvaleri@healthtech.com

Choose a payment option:
1. □ Enclosed is a check order payable to Cambridge Healthtech Publishing, in U.S. currency. (In Massachusetts, add 6.25% sales tax.)
2. □ Purchase order number ________________________________
3. □ Credit card: □ Amex □ Visa □ MC ___________ Exp. Date: ___________ Sec. Code: ___________

Cardholder: _______________________________ Signature: _______________________________

□ Mr. □ Ms. □ Mrs. □ Dr. □ First Name: ___________________________ Last Name: ___________________________
Job Title: ___________________________ Div./Dept. ___________________________ Company: ___________________________
Address (please include Mail Stop, Room or Bldg. #): ___

City/State/Postal Code: ___________________________ Country: ___________________________
Telephone: ___________________________ Fax: ___________________________ E-Mail: ___________________________

Please refer to the key code below

TO ORDER:
Web: InsightPharmaReports.com
Phone: 781-972-5444
Fax: 781-972-5425
E-mail: rlaraia@healthtech.com
Mail: Cambridge Healthtech Institute
Rose LaRaia
250 First Avenue, Suite 300
Needham, MA 02494