A worldwide epidemic of type 2 diabetes has been in progress since the mid-1980s, according to the World Health Organization. The worldwide number of diabetics was 30 million in 1985 and is projected to increase to at least 366 million by 2030.

In the United States, it is estimated that almost 60% of people with type 2 diabetes have at least 1 serious health problem associated with the disease, and almost 8% of diabetics have 4 or more of these complications, according to a report from the American Association of Clinical Endocrinologists (AACE).

This new report from Insight Pharma Reports (formerly Advances Reports), provides a strategic perspective on the field of drugs for diabetes and its complications, with an emphasis on novel and emerging drugs and therapeutic strategies.
Overview

In the United States, almost 21 million people, or 7% of the population, have diabetes, and an estimated 54 million people are in a state of prediabetes, according to the American Diabetes Association. The AACE report estimates that the direct medical costs related to diabetes complications in 2006 alone amounted to $22.9 billion. Typical complications from diabetes include heart attack, chronic kidney disease, congestive heart failure, stroke, coronary heart disease, foot problems, and eye damage.

Diabetes and Its Complications: Strategies to Advance Therapy and Optimize R&D gives a complete picture of today’s therapeutic landscape, including:

- Background for understanding the nature, epidemiology, pathobiology, and cost of diabetes
- Experimental therapeutic strategies for prevention of type 1 diabetes in susceptible individuals
- The pathogenesis of type 2 diabetes and its relationship to obesity
- Current diagnosis and treatment modalities for diabetes, types 1 and 2
- An evaluation of competitors in the diabetes market—their pipelines and specific products, alliances, therapeutic focus, and more
- Assessment of novel classes of antidiabetics that include drugs introduced into the market in 2005 and 2006, as well as drugs in still newer classes now in corporate pipelines
- Assessment of leading research and preclinical-stage drugs, and novel therapeutic strategies for type 2 diabetes
- Assessment of agents in development for diabetic complications, including a novel unifying model for induction of microvascular complications and a novel model for induction of macrovascular complications
- The market outlook for new antidiabetic drugs

The report also includes a survey conducted by CHI in January 2007 of the views and plans of individuals at the forefront of R&D for diabetes and its complications.

The worldwide epidemic in diabetes, overwhelmingly type 2 diabetes, is driven by increased rates of obesity, especially in industrialized countries and in emerging industrial countries such as India and China, coupled with the aging of the populations in both sets of countries. A key factor in the discovery and development of successful new antidiabetic drugs is addressing the major unmet needs in type 2 diabetes, especially the need for drugs that both lower blood glucose and enable patients to lose weight, and the need to slow or reverse the decline in pancreatic beta-cell function, which is the major cause of the progression of the disease.

Diabetes and Its Complications: Strategies to Advance Therapy and Optimize R&D, with thorough analyses of the therapeutic sectors, combined with detailed tables and figures, puts this complicated disease and its complications in perspective.

Table 5.1. Classes of Antidiabetic Drugs Introduced into the Market since 2005

<table>
<thead>
<tr>
<th>Drug Class</th>
<th>Marketed and Leading Pipeline Drugs</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amylin analogs</td>
<td>Pramlintide (Amylin's Symlin). Approved, 2005.</td>
<td>Peptide drug; delivered via subcutaneous injection. Approved for use in type 1 and type 2 diabetics who use premixed insulin therapy and have failed to achieve desired glycemic levels despite optimal insulin therapy. Taken before meals.</td>
</tr>
<tr>
<td>Incretin mimetics</td>
<td>Exenatide (Amylin/Lilly's Byetta). Approved, 2005.</td>
<td>Peptide drug delivered via subcutaneous injection. Exenatide must be taken together with a sulfonylurea, metformin, a TZD, or a combination of these established agents. Promotes insulin secretion by beta cell.</td>
</tr>
</tbody>
</table>

Source: Haberman Associates

About the Author
Allan B. Haberman, PhD, is Principal of Haberman Associates, a consulting firm specializing in science and technology strategy for pharmaceutical, biotechnology, and other life science companies. He is also a Principal and Founder of the Biopharmaceutical Consortium (www.biopharmconsortium.com), an expert team formed to assist life science companies, research groups, and emerging enterprises to identify and exploit promising, breakthrough technologies. He is also the author of numerous publications on the pharmaceutical and biotechnology industries, their technologies and products, and on the major therapeutic areas for drug discovery and development. Formerly the associate director of the Biotechnology Engineering Center at Tufts University, he received his PhD in biochemistry and molecular biology from Harvard University.

Tables

- **Major Social and Economic Factors that Drive the Worldwide Increase in Obesity**
- **Selected Genetic Factors Implicated in Development of Beta-Cell Dysfunction in Type 2 Diabetes**
- **Established Classes of Oral Drugs for Treatment of Type 2 Diabetes**
- **Classes of Antidiabetic Drugs Introduced into the Market since 2005**
- **Novel Classes of Antidiabetic Drugs Now in Clinical Trials**
- **Selected Research-Stage Agents and Novel Therapeutic Strategies for Type 2 Diabetes**
- **Selected Pipeline Drugs for Diabetic Complications**

Figures

- **Projected Growth in Worldwide Prevalence of Diabetes, 1985 to 2030**
- **Insulin-Signaling Pathway**
- **Future Prospects for DPP-IV Inhibitors**
- **Involvement in Novel Biomarker Discovery**
- **Importance of Novel Biomarkers in Design of Clinical Trials for Antidiabetic Drugs**
- **Importance of R&D Collaboration**
- **Primary Mode of Collaboration**
- **Diabetes Product Areas Represented by Respondents**
- **Physiological and Biochemical Pathways Addressed by Pipeline Drugs for Type 2 Diabetes**
- **Unified Diabetic Complications Model**
Table of Contents

Chapter 1: Introduction
1.1. Risk Factors for Type 2 Diabetes
 Preventing Development of Diabetes in Prediabetic Individuals
1.2. Growth in Prevalence of Diabetes
 Worldwide Increase in Obesity
1.3. Economic Burden of Diabetes
1.4. Market Size for Current Diabetes Drugs
1.5. Unmet Medical Needs in Diabetes
 Type 2 Diabetes
 Type 1 Diabetes

Chapter 2: Type 1 Diabetes as an Autoimmune Disease
2.1. Genetic and Environmental Determination of Type 1 Diabetes
 Genetic Determinants
 Environmental Determinants
2.2. Pathogenesis of Type 1 Diabetes
 Trials of Agents to Prevent or Ameliorate Type 1 Diabetes in Patients with Prediabetes or New-Onset Diabetes
 ENDIT and DPT-1
 Anti-CD3 Agents
 New Approaches to Treatment of Established Type 1 Diabetes

Chapter 3: Type 2 Diabetes as a Metabolic Disease
3.1. Obesity as a Cause of Insulin Resistance and Beta-Cell Dysfunction
 Adipokines, Obesity, and Insulin Resistance
 Free Fatty Acids as a Critical Factor in Both Insulin Resistance and Beta-Cell Dysfunction
 Obesity, Inflammation, and Insulin Resistance
 Salicylates as Therapeutic Drugs
 Chemical Chaperones as Therapeutic Agents: PBA and TUDCA
3.2. Genetic Factors in Development of Beta-Cell Dysfunction
 Activating Mutations in the KCNJ11 Gene
 TCF7L2: A Major Risk Factor for Late-Onset Type 2 Diabetes
 Type 2 Diabetes Is Caused by a Combination of Genetic Risk Factors

Chapter 4: Current Diagnosis and Treatment of Diabetes
4.1. Diagnosis of Diabetes
4.2. Treatment of Diabetes
 Diet and Exercise
 Concurrent Treatment of Other Aspects of the Metabolic Syndrome
4.3. Insulin Products
 Insulin Formulations with Different Durations of Action
 Long-Acting Insulin Glargine Inhaled Insulin
4.4. Established Oral Antidiabetics
 Sulfonylureas
 Biguanides: Metformin
 Meglitinides
 Alpha-glucosidase Inhibitors
 Thiazolidinediones
4.5. Type 2 Diabetes Management Using the Established Oral Antidiabetics and Insulin
 ADA/EASD Consensus Statement
 ADA/EASD Panel’s Recommendations versus Traditional Treatments
 Deemphasis of Newer Drugs in the Panel’s Recommendations
 Disagreement with the Panel’s Findings

Chapter 5: Novel and Emerging Antidiabetic Drugs
5.1. Approved and Pipeline Drugs Belonging to Drug Classes Introduced into the Market since 2005
 Amylin Analogs: Pramlintide
 Incretin Mimetics
 Exenatide
 GSK7716155
 Linagliptin
 Dipeptidyl Peptidase-IV Inhibitors
 Sitagliptin
 Vildagliptin
 Saxagliptin
 PSN9301
 Outlook for the Newly Introduced Antidiabetic Drugs
5.2. Novel Classes of Antidiabetics in Corporate Pipelines
 PPARα/PPARγ Dual Agonists (Glitazars)
 PPARγ Partial Agonists
 MBX-102
 FK614 and PA-082
 PPARα, β, γ Pan-Agonists
 Cannabinoid-1 Receptor Agonists
 RIO-Diabetes Study
 SERENADE
 11 Beta-hydroxysteroid Dehydrogenase Type 1
 Sodium Glucose Cotransporter-2 Inhibitors
 Glucokinase Activators

Chapter 6: Early-Stage Drugs and Novel Therapeutic Strategies for Type 2 Diabetes
6.1. Does the Lack of Scientific Knowledge of Type 2 Diabetes Hamper Development of Effective Treatments?
6.2. The Inadequacy of Animal Models in Type 2 Diabetes
6.3. Strategies for Making Drug Discovery and Development More Effective
 Dealing with Multiple Molecular “Causes” of Disease by Hitting More than 1 Target
 Whole-Pathway Approaches
 Biology-Driven Drug Discovery
 Biomarkers and Translational Medicine
 Animal Models and Complex Diseases
6.4. The Diabetes Survey and Issues Related to Strategies to Improve the Effectiveness of Drug Discovery and Development
6.5. Selected Research-Stage Agents and Novel Therapeutic Strategies for Type 2 Diabetes
 Small-Molecule GLP-1 Receptor Agonists
 Boce
 Ago-Allosteric Modulators
 Protein Tyrosine Phosphatase 1B Inhibitors
 Preclinical Development of Small-Molecule PTP1B Inhibitors
 Development of Antisense Drugs: ISIS 113715
 AMP-Activated Protein Kinase Activators
 CyRx Corporation’s RNAi-Based Drug Discovery Programs in Type 2 Diabetes and Obesity
 Receptor-Interacting Protein 140
 MAPK4
 Sirtuin Modulators
 Ghrelin Antagonists (Growth Hormone Secretagogue Receptor Antagonists)
 GPR119 Agonists
6.6. Conclusions: Development of Novel Antidiabetics and the CHI Diabetes Survey

Chapter 7: Diabetic Complications
7.1. Microvascular Complications
 Diabetic Retinopathy
 Diabetic Neuropathy
 Diabetic Nephropathy
7.2. Prevention of Diabetic Complications
7.3. Pathogenesis of Diabetic Complications
 Four Pathogenic Pathways in Diabetic Complications
 A Unifying Model for Induction of Microvascular Diabetic Complications
 Induction of Macrovascular Complications in Insulin-Resistant and Diabetic Individuals
7.4. Novel Drugs and Therapeutic Strategies for Diabetic Complications
 Drugs for Diabetic Complications in Clinical Trials
 Ranirestat
 Ranibizumab and Pegaptanib
 Ruboxistaurin
 Alagebrium
 Pyridoxamine
 Sulodexide
7.5. Novel Therapeutic Strategies for Diabetic Complications
 Therapeutic Strategies Based on Brownlee’s Unified Diabetic Complications Model
 Development of Transketolase Activators
 Development of PARP Inhibitors
 Development of Catalytic Antioxidants
 A Novel Therapeutic Strategy for Diabetic Retinopathy Based on Targeting Extracellular Carbonic Anhydrase and Kallikrein

Chapter 8: Outlook
8.1. A Disease of Progress
8.2. Where to Go from Here
8.3. Addressing Unmet Needs
8.4. Aiming for Multiple Targets

Appendix: CHI Insight Pharma Reports—Diabetes Survey, January 2007
References
Glossary of Selected Terms
Company Index with Web Addresses
Metabolic and Inflammatory Disease R&D: An Assessment of 5 Highly Promising Therapeutic Classes

This report details early development efforts for targets of high interest in the areas of inflammatory or metabolic diseases, concentrating on 5 target classes:

- Chemokine antagonists
- Toll-like receptors
- Melanin-concentrating hormone antagonists
- Melanocortin MC4 agonists
- 11β-hydroxysteroid dehydrogenase inhibitors

Each of these target classes has the potential to provide high-revenue drugs, for the treatment of inflammatory disease, obesity, and metabolic syndrome. Details are provided for the following diseases:

Inflammatory Diseases
- Respiratory Diseases
- Arthritis

Metabolic Diseases
- Diabetes
- Metabolic Syndrome
- Obesity
- Lipid Disorders

Metabolic and Inflammatory Disease R&D details and assesses the efforts of more than 20 major pharmaceutical companies and more than 25 additional companies to manage the development of potential metabolic/inflammatory therapeutic products through R&D into the clinic. Leading researchers at companies at the forefront of R&D in these target areas offer their views of the challenges, the applications, and the relevant clinical data that will determine their potential use in medicine.

To view a table of contents and executive summary, please visit www.InsightPharmaReports.com

Related Reports

Diabetes and Its Complications: Strategies to Advance Therapy and Optimize R&D

- Diabetes and Its Complications, May 2007 (est. 180 pages)
- Metabolic and Inflammatory Disease R&D, April 2007 (170 pages)

Purchase both reports and receive a 10% discount.

Single-site licenses are multi-user, searchable, cut-and-paste ready PDFs

For global license pricing, contact David Cunningham at 782-972-5472 or cunningham@healthtech.com

Choose a payment option:

1. ☐ Enclosed is a check order payable to Cambridge Healthtech Publishing, in U.S. currency. (In Massachusetts add 5% sales tax.)
2. ☐ Purchase order number______________________________
3. Credit card: ☐ AMEX ☐ Visa ☐ MC ☐ Diners Club #:______________________________ Exp. Date:________ Sec. Code:________

Cardholder:__ Signature:__________________________

☐ Mr. ☐ Ms. ☐ Mrs. ☐ Dr. First Name:______________________________ Last Name:____________________________

Job Title:______________________________ Div./Dept.________________________ Company:________________________

Address (please include Mail Stop, Room or Bldg. #):__

City/State/Postal Code:__ Country:________________________

Telephone:______________________________ Fax:______________________________ E-Mail:__

TO ORDER:

Web: www.InsightPharmaReports.com
Phone: 781-972-5444
Fax: 981-972-5425
E-mail: rlaraia@healthtech.com
Mail: Rose LaRaia
250 First Avenue, Suite 300
Needham, MA 02494

Please refer to the key code below